These impossible instruments could change the future of music

What Sassoon had heard were the early results of a curious project at the University of Edinburgh in Scotland, where Ducceschi was a researcher at the time. The Next Generation Sound Synthesis, or NESS, team had pulled together mathematicians, physicists, and computer scientists to produce the most lifelike digital music ever created, by running hyper-realistic simulations of trumpets, guitars, violins, and more on a supercomputer.

Sassoon, who works with both orchestral and digital music, “trying to smash the two together,” was hooked. He became a resident composer with NESS, traveling back and forth between Milan and Edinburgh for the next few years.

It was a steep learning curve. “I would say the first year was spent just learning. They were very patient with me,” says Sassoon. But it paid off. At the end of 2020, Sassoon released Multiverse, an album created using sounds he came up with during many long nights hacking away in the university lab.

One downside is that fewer people will learn to play physical instruments. On the other hand, computers could start to sound more like real musicians—or something different altogether.

Computers have been making music for as long as there have been computers. “It predates graphics,” says Stefan Bilbao, lead researcher on the NESS project. “So it was really the first type of artistic activity to happen with a computer.”

But to well-tuned ears like Sassoon’s, there has always been a gulf between sounds generated by a computer and those made by acoustic instruments in physical space. One way to bridge that gap is to re-create the physics, simulating the vibrations produced by real materials.

The NESS team didn’t sample any actual instruments. Instead they developed software that simulated the precise physical properties of virtual instruments, tracking things like the changing air pressure in a trumpet as the air moves through tubes of different diameters and lengths, the precise movement of plucked guitar strings, or the friction of a bow on a violin. They even simulated the air pressure inside the virtual room in which the virtual instruments were played, down to the square centimeter. 

Source: MIT Technology Review

Posted in Uncategorised and tagged .